Neural + Quant Pipeline · Explainable Output
58%
lOW
Structured + Semantic + Time-Series
Sports Foundation Representation)
ENCODE: context → representation (embedding space)
OUTPUT: unified embeddings for inference & calibration
#foundation representation (conceptual) z =
SportsFoundationModel(x='multi-source').encode() emb =
normalize(z) #unified embedding space ctx = attend(emb) #
context linking emit({'embedding': ctx})
Factor Adjust + Attribution
| Form |
|
+0.18 |
| Fatigue |
|
-0.09 |
| Matchup |
|
+0.12 |
| Context |
|
+0.06 |
| Sentiment |
|
+0.04 |
模型把"状态、疲劳、对位、环境、情绪"等因素拆成可计算信号,并告诉你哪些因素正在推高/压低胜率——— 这就是 Attribution。
Risk Guardrail + Interpretable results sheet
当风险升高:系统会降低结论确定性表述、提高风险提示,并把建议自动降级为"更保守的口径”这就是 Guardrail 的价值。
+6.0%
区间越宽→不确定性越高
lOW
异常波动/信息不足→MID/HIGH